Go with the Flow: The Direction-Based Fréchet Distance of Polygonal Curves
نویسندگان
چکیده
We introduce a new distance measure for directed curves in R, called the direction-based Fréchet distance. Like the standard Fréchet distance, this measure optimizes over all parameterizations for a pair of curves. Unlike the Fréchet distance, it is based on differences between the directions of movement along the curves, rather than on positional differences. Hence, the direction-based Fréchet distance is invariant under translations and scalings. We describe efficient algorithms to compute several variants of the direction-based Fréchet distance, and we present an applet that can be used to compare the direction-based Fréchet distance with the traditional Fréchet distance.
منابع مشابه
Approximately matching polygonal curves with respect to the Fre'chet distance
In this paper we present approximate algorithms for matching two polygonal curves with respect to the Fréchet distance. We define a discrete version of the Fréchet distance as a distance measure between polygonal curves and show that this discrete version is bounded by the continuous version of the Fréchet distance. For the task of matching with respect to the discrete Fréchet distance, we deve...
متن کاملHow Difficult is it to Walk the Dog?
We study the complexity of computing the Fréchet distance (also called dog-leash distance) between two polygonal curves with a total number of n vertices. For two polygonal curves in the plane we prove an Ω(n log n) lower bound for the decision problem in the algebraic computation tree model allowing arithmetic operations and tests. Up to now only a O(n) upper bound for the decision problem was...
متن کاملComputing the Fréchet distance between two polygonal curves
Computing the Fréchet distance between two polygonal curves H Alt, M Godau International Journal of Computational Geometry & ..., 1995 World Scientific As a measure for the resemblance of curves in arbitrary dimensions we consider the socalled Fréchet-distance, which is compatible with parametrizations of the curves. For polygonal chains P and Q consisting of p and q edges an algorithm of runti...
متن کاملComputing Fréchet Distance with Speed Limits
In this paper, we study a problem on computing the Fréchet distance between two polygonal curves and provide efficient solutions for solving it. In the classical Fréchet distance, point objects move arbitrarily fast on the polygonal curves. Here, we consider the problem instance where the speed per segment is a constant within a specified range. We first describe a naive algorithm which solves ...
متن کاملFréchet distance with speed limits
In this paper, we introduce a new generalization of the well-known Fréchet distance between two polygonal curves, and provide an efficient algorithm for computing it. The classical Fréchet distance between two polygonal curves corresponds to the maximum distance between two point objects that traverse the curves with arbitrary non-negative speeds. Here, we consider a problem instance in which t...
متن کامل